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Abstract. The pressure-Poisson stabilized Galerkin method for the Stokes equation requires
the choice of a positive parameter. Existing theoretical predictions for the range of parameter values
that yield stable discretizations seem to be very pessimistic when compared to the computational
evidence. Motivated by this wide gap, we first examine a continuous prototype for this class of
schemes. We show that the prototype is absolutely stable, i.e., it is stable for all parameter values,
and is optimally accurate. We then define a new, practical variant of the well-known pressure-
Poisson stabilized scheme. We prove that the new method is absolutely stable just like its continuous
prototype and that it achieves optimal convergence rates with respect to the same mesh-independent
norms. The new method differs from the standard pressure-Poisson stabilized method in several
important aspects. First, its definition does not degrade to a penalty formulation for the lowest
order nodal spaces. Second, the method is absolutely stable with respect to the natural norm for
the problem, while the standard pressure-Poisson stabilized method is stable with respect to a mesh-
dependent norm.
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1. Introduction. The stable and accurate finite element solution of the Stokes
problem requires pairs of velocity and pressure spaces that satisfy the inf-sup (or LBB)
compatibility condition; see, e.g., [7,15,16]. In the past two decades, the formulation of
finite element methods that either circumvent or ameliorate this restrictive condition
has attracted significant attention. Examples include augmented Lagrangian methods
[12], least-squares finite element methods [4], and a group of methods collectively
known as consistently stabilized Galerkin methods; see [1, 3, 8, 11, 13, 14, 17–19]. In
what follows, we will refer to the members of the latter group as the standard stabilized
methods.

In this paper, we develop and analyze a new stabilized formulation that can be
related to one of the standard methods originally proposed in [18] and widely known
as the pressure-Poisson stabilized Galerkin method. To demonstrate the connection
between the new and the standard methods, we introduce the notion of continuous
stabilized prototypes. Continuous prototypes are idealized finite element methods
that are not necessarily practical. Their role is to provide a template that reveals
the proper functional settings and guides the development of practical schemes. In
addition, prototypes serve as a gauge to measure the deviation of practical methods
from the idealized mathematical setting. All practical methods associated with a
particular prototype form a class of methods. Here, we will derive the prototypes that
engender the three most commonly used stabilized methods for the Stokes problem.
For reasons that will be explained later, we call the three classes the GLS, SGLS, and
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RGLS method classes.
Consistently stabilized methods contain a positive parameter that must be set to

define the method. It is well known that standard stabilized methods can be divided
into those that are conditionally stable and those that are absolutely stable, i.e., those
that are stable only for a set of restricted values of the parameter and those that are
stable for all values of the parameter, respectively. According to previous theoretical
analyses, the standard Galerkin least-squares [17] and pressure-Poisson [18] methods
fall into the first category while the method of [11] is an example of an absolutely
stable method. Stability classifications of stabilized methods are based on sufficient
(weak or strong) coercivity conditions for the corresponding forms. Thus, in principle,
they represent the worst case scenario and, in practice, there may be a gap between
the theoretically predicted stability range of a method and the stability range observed
in computational implementations. For the Galerkin least-squares method this gap
is very narrow if it exists at all; see [13] or [2]. In other words, for this method,
the stability range predicted by existing theory agrees with great accuracy with its
practical stability range.

The main focus of this paper will be on the SGLS class which contains the stan-
dard pressure-Poisson stabilized method. Our interest in this class is not incidental.
In [2], we reported an unusually large discrepancy between the well-known theoretical
stability analysis of [8] and the actual, computationally observed stability range of
the standard pressure-Poisson Galerkin method. In fact, what was observed compu-
tationally indicates that this method is actually absolutely stable. In this paper, we
show that there are indeed grounds for such a stability pattern. Most notably, we
prove that the continuous SGLS prototype is absolutely stable. Then, we define a
new discrete member of this class which also turns out to be absolutely stable.

Our new method differs from the standard pressure-Poisson Galerkin formulation
in several important aspects. First, its definition does not degrade to a penalty
formulation for the lowest-order nodal spaces. Second, we show that our method is
absolutely stable with respect to the natural norm on H1(Ω)×L2

0(Ω), while stability
of the standard method is with respect to a mesh-dependent norm. Lastly, while the
new method is not fully consistent, it is weakly inconsistent in the sense that finite
element approximations converge to all smooth solutions at the best possible rate.

Our analysis suggests that the new, implementable SGLS method is a potentially
strong contender in the field of stabilized formulations for the Stokes problem. The
absolute stability makes it an attractive alternative to GLS methods that, both the-
oretically and practically, are known to be only conditionally stable. Compared with
the absolutely stable RGLS methods, the new formulation avoids the appearance of
local biharmonic terms that in principle should lead to better conditioned matrices.
This conjecture is supported by our studies in [2] which suggest that Krylov subspace
solvers generally tend to perform better for members of the SGLS family of stabilized
methods. Nevertheless, further numerical studies will be needed to reach a defini-
tive conclusion about the practical performance of our new method. These will be
reported in a forthcoming paper.

We have organized the paper as follows. In Section 2, we summarize notations
and quote technical results that are used throughout the paper. Section 3 develops
the notion of continuous stabilized prototypes starting from a penalized Lagrangian
formulation of the Stokes problem. Sections 4–5 are the core of this paper. Their focus
is on the SGLS class of stabilized methods. In Section 4, we consider the continuous
prototype of this class and show that it is absolutely stable. Then, in Section 5, we
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proceed to define a new discrete member of the SGLS class and establish its absolute
stability and optimal convergence. In Section 6, we conclude the paper with several
remarks concerning implementation of the new method.

2. Quotation of results. Let Ω denote a bounded region in Rn, n = 2, 3 with a
Lipschitz continuous boundary Γ = ∂Ω. For p > 0, Hp(Ω) denotes a Sobolev space of
order p with norm and inner product denoted by ‖ · ‖p and (·, ·)p, respectively. When
p = 0 we use the standard notation L2(Ω). The symbol | · |k, 0 ≤ k ≤ p, denotes
the kth seminorm on Hp(Ω). We recall the subspace L2

0(Ω) of all square integrable
functions with vanishing mean and the subspace H1

0 (Ω) of all H1(Ω) functions with
vanishing trace. The Poincaré’s inequality

CP ‖φ‖0 ≤ ‖∇φ‖0 ∀φ ∈ Hp(Ω) ∩H1
0 (Ω)(2.1)

implies that the seminorm |φ|1 = ‖∇φ‖0 is an equivalent norm on H1
0 (Ω). Vector

analogues of the Sobolev spaces along with vector-valued functions are denoted by
upper and lower case bold face font, respectively, e.g., H1(Ω), L2(Ω), and u. For
vectors in Euclidean spaces, we use vector notation, e.g., ~x and ~y. Matrices are
denoted by block letters, e.g., A and B.

Vh and Sh will denote a pair of finite element subspaces of H1
0(Ω) and L2

0(Ω),
respectively. We assume that these spaces are defined with respect to the same reg-
ular triangulation Th of the domain Ω into finite elements K, where h denotes some
measure of the grid size. For example, K can be hexahedrons or tetrahedrons in three
dimensions or triangles or quadrilaterals in two dimensions. We will use C to denote
a generic constant that is independent of h but whose value may change from place
to place. Let r > 0 and s > 0 be two integers. It is further assumed that for every
u ∈ Hr+1(Ω) and p ∈ Hs+1(Ω), there exist functions uh

I ∈ Vh and ph
I ∈ Sh such that

‖u− uh
I ‖0 + h‖u− uh

I ‖1 ≤ Chr+1‖u‖r+1(2.2)

and

‖p− ph
I ‖0 + h‖p− ph

I ‖1 ≤ Chs+1‖p‖s+1 ,(2.3)

respectively. We recall the inverse inequalities

‖uh‖1 ≤ CIh
−1‖uh‖0 and ‖ph‖1 ≤ CIh

−1‖ph‖0(2.4)

that hold for finite element spaces on regular triangulations; see [10] or [15].

2.1. Negative norm and inner product. Let H−1(Ω) denote the dual of
H1

0(Ω). Using the equivalence of | · |1 and ‖ · ‖1 on H1
0(Ω), we equip H−1(Ω) with the

norm

‖f‖−1 = sup
φ∈H1

0(Ω)

(f ,φ)0
|φ|1

∀ f ∈ H−1(Ω) .(2.5)

The following representation results hold (cf. [5, 6]).
Lemma 2.1. For all f ∈ H−1(Ω), we have

‖f‖2−1 = (Sf , f)0 ,

where S : H−1(Ω) 7→ H1
0(Ω) is the solution operator for the vector Poisson equation

−4u = f in Ω and u = 0 on Γ ,



4 P. Bochev and M. Gunzburger

i.e., u = Sf if and only if

(∇u,∇v)0 = (f ,v)0 ∀v ∈ H1
0(Ω) .

If (·, ·)−1 is the inner product associated with ‖ · ‖−1, then

(f ,g)−1 = (Sf ,g)0 = (f ,Sg)0 ∀ f ,g ∈ H−1(Ω) .(2.6)

Using (2.6), it is not difficult to show that

(−4u,v)−1 = (u,v)0 ∀u ∈ H1
0(Ω),v ∈ H−1(Ω) .(2.7)

We also recall the well-known result (cf. [15, p.20]) that for any connected Ω there
exists a CN > 0 such that

CN‖p‖0 ≤ ‖∇p‖−1 ∀ p ∈ L2
0(Ω) .(2.8)

3. Stabilization of mixed methods for the Stokes problem. We consider
the Stokes equations

−4u +∇p = f in Ω(3.1)
∇ · u = 0 in Ω

u = 0 on Γ .

A weak formulation of the Stokes problem is to seek (u, p) ∈ H1
0(Ω)×L2

0(Ω) such that

A(u,v) + B(v, p) = F (v) ∀v ∈ H1
0(Ω)(3.2)

B(u, q) = 0 ∀ q ∈ L2
0(Ω) ,(3.3)

where A(·, ·), B(·, ·) and F (·) are defined by

A(u,v) =
∫

Ω

∇u : ∇v dΩ, B(v, p) = −
∫

Ω

p∇ · v dΩ, and F (v) =
∫

Ω

f · v dΩ ,

respectively. We recall that (3.2)–(3.3) is the optimality system for the saddle-point
(u, p) of the Lagrangian functional

L(v, q) =
1
2
A(v,v)− F (v) + B(v, q) .(3.4)

Therefore, the pressure p is the Lagrange multiplier that is introduced into (3.4) to
enforce the (weak) incompressibility constraint (3.3). The restriction of (3.2)–(3.3) to
a pair of finite element subspaces Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω) yields the Galerkin

mixed method: seek (uh, ph) ∈ Vh × Sh such that

A(uh,vh) + B(vh, ph) = F (vh) ∀vh ∈ Vh(3.5)
B(uh, qh) = 0 ∀ qh ∈ Sh .(3.6)

For continuous pressure approximations and for velocity fields that vanish on the
boundary, B(·, ·) can be replaced by the equivalent bilinear form

B∗(v, p) =
∫

Ω

v · ∇p dΩ .
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It is easy to see that (3.5)–(3.6) is equivalent to the symmetric, indefinite linear
algebraic system (

A BT

B 0

)(
~u
~p

)
=
(

~f
~0

)
,(3.7)

where the elements of ~u and ~p are the coefficients in the representation in terms of
bases of the finite element pair (uh, ph); the matrices A and B are deduced in the
usual manner, using the bases for Vh and Sh, from the bilinear forms A(·, ·) and
B(·, ·) (or B∗(·, ·)), respectively.

The problems (3.5)–(3.6) and (3.7) are equivalent representations of the optimal-
ity system for the saddle-point (uh, ph) of (3.4) out of Vh × Sh, i.e., they represent a
discrete saddle-point problem. As a result, they lead to stable and accurate approx-
imations of (u, p) if and only if the pair (Vh, Sh) satisfies the following conditions:
first, the inf-sup condition (see [7, 15, 16]) there exists C > 0, independent of h, such
that

sup
vh∈Vh

B(vh, qh)
‖vh‖1

≥ C‖qh‖0 ∀ qh ∈ Sh

and second, A(·, ·) is coercive on Zh×Zh, where Zh = {vh ∈ Vh | B(qh,vh) = 0 ∀ q ∈
Sh} is the subspace of discretely solenoidal functions belonging to Vh. Examples of
unstable pairs include all equal order interpolation spaces defined with respect to
the same triangulation of Ω into finite elements, as well as such combinations as the
bilinear-constant pair; see [15,16].

3.1. Continuous stabilized prototypes. In the literature, the term finite el-
ement stabilization is commonly applied to describe the application of various regu-
larization techniques either to (3.4) or directly to (3.5)-(3.6) in order to circumvent
the inf-sup condition. Stabilization leads to finite element methods that allow for an
unrestricted choice of velocity and pressure spaces, including the choice of equal order
interpolation. Consistent stabilization is one of the most popular types of regulariza-
tion because it avoids penalty errors and can, in principle, be extended to achieve an
arbitrarily high order of accuracy. Typically, consistently stabilized methods are de-
fined at the discrete level and employ mesh-dependent norms and inner products. In
this section, we formulate continuous prototypes for these methods. The prototypes
represent idealized variational problems that can be used to derive practical finite
element schemes. The origin of the continuous prototypes can be best understood
by considering first the regularization of (3.4) by penalty. The relevant penalized
Lagrangian functional is

L(v, q) =
1
2
A(v,v)− F (v) + B(v, q)− δ‖q‖20 .(3.8)

The optimality system for (3.8) is to seek (u, p) ∈ H1
0(Ω)× L2

0(Ω) such that

A(u,v) + B(v, p) = F (v) ∀v ∈ H1
0(Ω)(3.9)

B(u, q)− δM(p, q) = 0 ∀ q ∈ L2
0(Ω) ,(3.10)

where M(p, q) = (p, q)0. Thus, the effect emanating from the penalty term in (3.8)
is to relax the constraint in (3.3). In terms of algebraic problems, this means that
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instead of the indefinite problem (3.7), now finite element discretization yields a linear
system of the form (

A B
BT −δM

)(
~u
~p

)
=
(

~f
~0

)
,(3.11)

having a “definite” coefficient matrix.4 As a result, one can show that a finite element
method based on (3.8) is stable for any conforming choice of Vh and Sh. The trouble
with (3.8) is the penalty error that limits the order of approximation to O(

√
δ),

regardless of the interpolation order of the pair (Vh, Sh).
The idea of consistent stabilization is to modify (3.2)–(3.3) to a problem like

(3.9)–(3.10) but without incurring a penalty error. This requires a term that will
generate the desired stabilizing contribution but will vanish on all sufficiently smooth
exact solutions. To construct such a term, note that thanks to (2.8)

CP ‖p‖0 ≤ ‖∇p‖−1 ≤ C‖p‖0 ,

i.e., ‖∇p‖−1 is an equivalent norm on L2
0(Ω). As a result, ‖∇p‖2−1 will have the same

stabilization effect as ‖p‖20. However, unlike the latter, ‖∇p‖2−1 can be included via
the residual of (3.1) and so, when added to (3.2)–(3.3), the term

δ (−4u +∇p− f ,−α4v +∇q)−1

will generate the appropriate stabilizing contribution but without the penalty error.
This leads to a family of continuous stabilized prototypes: seek (uh, ph) ∈ Vh × Sh

such that

Qβ
α(uh, ph;vh, qh) = F β

α (vh, qh)(3.12)

for all (vh, qh) ∈ Vh × Sh, where

Qβ
α(u, p;v, q) = A(u,v) + B(v, p) + βB(u, q)

−δ (−4u +∇p,−α4v + β∇q)−1

(3.13)

and

F β
α (v, q) = F (v)− δ (f ,−α4v + β∇q)−1(3.14)

are a bilinear form
[
H1

0(Ω)× L2(Ω)
]2 7→ R and a linear functional H1

0(Ω)×L2(Ω) 7→
R parametrized by α, β, and δ. In (3.13)–(3.14), α and β take on the values {−1, 0, 1}
and {−1, 1}, respectively, and δ is a positive, real valued parameter. A method is
called absolutely stable if the form Qα

β is weakly or strongly coercive for all values of
δ. If this is true only for selected values of δ, the method is called conditionally stable.
In what follows, we will work exclusively with continuous pressure approximations in
which case we can write

Qβ
α(uh, ph;vh, qh) ≡ A(uh,vh) + B∗(vh, ph) + βB∗(uh, qh)

−δ
(
−4uh +∇ph,−α4vh + β∇qh

)
−1

.
(3.15)

4The matrix in (3.11) is definite in the sense that„
A B
−BT +δM

«
that is obtained from the coefficient matrix in (3.11) by multiplying the lower block of equations by
−1, is real, positive definite.
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We call (3.12) prototypes because the H−1(Ω) inner product is not computable so
that (3.13) or (3.15) and (3.14) cannot be used directly in a finite element method.
However, if the H−1(Ω) inner product appearing in (3.13) or (3.15) and (3.14) is
replaced by a discrete approximation, each prototype will give rise to a practical
method. All methods that can be associated with a particular prototype by virtue of
such a substitution form the stabilized class generated by this prototype.

Remark 1. While the stabilized problem (3.12) is a modification of an equation
that represents an optimality system, it is not necessarily itself an optimality system
of some modified Lagrangian. Many of the methods defined by (3.12) can only be
derived as modifications of (3.5)–(3.6), i.e., they cannot be formulated starting from
a modification of (3.4) and then deriving the associated optimality system.

Remark 2. If u is approximated by piecewise linear or bilinear finite element
functions, the second-order derivative terms in (3.13) vanish and the prototypes (3.12)
reduce to a penalized formulation in which the Lagrangian functional (3.4) is penalized
by −δ‖∇q‖2−1.

Introducing the bilinear forms

D(u,v) = δ (−4u,−4v)−1 , C(v, q) = δ (4v,∇q)−1

and

K(p, q) = δ (∇p,∇q)−1

defined on H1
0(Ω)×H1

0(Ω), H1
0(Ω)×L2(Ω), and L2(Ω)×L2(Ω), respectively, we can

write (3.15) in the form

Qβ
α(uh, ph;vh, qh) = A(uh,vh) + B∗(vh, ph) + βB∗(uh, qh)

−αD(uh,vh) + αC(vh, ph) + βC(uh, qh)− βK(ph, qh) .

It is then easy to see that the discrete system (3.12) is equivalent to a family of linear
algebraic systems of the form(

A− αD B + αC
β(B + C)T −βK

)(
~u
~p

)
=

(
~f1
~f2

)
,(3.16)

where the matrices C, D, and K are respectively deduced in the usual manner from
the bilinear forms C(·, ·), D(·, ·), and K(·, ·).

Choosing different α and β gives rise to different bilinear forms in (3.13) and to
different matrices in (3.16). It is easy to see that the choices {α, β} and {α,−β}
define variational problems that can be derived from one another by simply changing
the pressure test function in (3.12) from qh to −qh. Likewise, the linear system (3.16)
generated by the choice {α,−β} can be derived from that for the choice {α, β} by
simply scaling the second row of blocks by −1. Therefore, the linear systems produced
by the two choices {α, β} and {α,−β} are equivalent in the sense that they have
exactly the same solution.5 We will call these variational problems along with their
associated bilinear forms and linear algebraic systems complementary. The choice of

5Although the choices {α, β} and {α,−β} yield the same solution, the algebraic properties of the
corresponding coefficient matrices can be vastly different. As a result, the performance of iterative
solution techniques can also be vastly different; cf. [2].
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α determines the class of complementary forms while the two forms within each class
are generated by selecting β equal to either 1 or −1.

For consistency with the established terminology, we call the prototype corre-
sponding to α = 1 Galerkin least-squares, or GLS. Since taking α = 0 “simplifies” the
weighting function, we call this class of methods simplified Galerkin least-squares, or
SGLS. Finally, choosing α = −1 “reflects” the sign of the second order term and so
we refer to this prototype as reflected Galerkin least-squares, or RGLS.

The standard members of the GLS, SGLS and RGLS classes of methods are ob-
tained when the H−1(Ω) inner product appearing in (3.15) and (3.14) is approximated
by a weighted L2 inner product in the following manner:

Qβ
α,h(uh, ph;vh, qh) = A(uh,vh) + B∗(vh, ph) + βB∗(uh, qh)

−
∑
K∈Th

δh2
K(−4uh +∇ph,−α4vh + β∇qh)0,K

(3.17)

and

F β
α,h(vh, qh) = F (vh)−

∑
K∈Th

δh2
K(f ,−α4vh + β∇qh)0,K ,(3.18)

respectively. When α = 1 and β = 1, we recover from (3.17) and (3.18) the original
Galerkin least-squares method of [17]. For α = 0 and β = −1, they give the original
pressure-Poisson stabilized mixed method of [18]. The case α = −1 and β = 1 gives
the method of [11].

The weighted L2 norm is not a particularly accurate approximation of the negative
norm. Its main defect is that

C1

(
h‖uh‖0

)
≤ ‖uh‖−1 ≤ C2h

−1
(
h‖uh‖0

)
.

This equivalence relation, including the factor h−1 in the upper bound, is sharp,
and means that (3.17) is stable with respect to a mesh-dependent norm that is not
uniformly (in h) equivalent to the norm on H1(Ω) × L2(Ω). A more sophisticated,
but also a more complicated approximation is to use a discrete equivalent proposed
in [6] in the context of least-squares finite element methods. For stabilized methods
based on this norm, we refer to [9].

Analyses of the standard GLS and RGLS methods in [17] and [11], respectively,
classify the first one as a conditionally stable scheme and the second one as an abso-
lutely stable scheme. This means that for α = 1, the choice of δ in (3.17)–(3.18) is
restricted to some finite interval 0 < δ0 ≤ δ ≤ δmax, while for α = −1, the form in
(3.17) is stable for any positive δ. In both cases, theoretical classifications agree well
with the practical stability of the respective finite element methods; see [13] and [2].
However, this is not so for the standard SGLS method. The formal analysis of [8] clas-
sified this method as conditionally stable, with a stability range estimate very close to
that of the standard GLS method. In practice, after extensive numerical experiments,
we found that the standard SGLS behaves much more like the absolutely stabilized
RGLS method; see [2]. This unexpected practical stability prompted us to reexamine
the SGLS class starting from its continuous prototype. Thus, for the remainder of
this paper, our focus will be on SGLS methods.

4. Continuous SGLS. In this section, we show that the continuous SGLS pro-
totype

Q±
0 (u, p;v, q) = A(u,v) + B∗(v, p)±B∗(u, q)− δ (−4u +∇p,±∇q)−1
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is absolutely stable.
Theorem 4.1. Let Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω) ∩ H1(Ω). Then, Q−

0 (·; ·) is
coercive for 0 < δ < 4 and Q±

0 (·; ·) are weakly coercive for any δ ≥ 4, i.e., there exists
C > 0, independent of h, such that

Q−
0 (uh, ph;uh, ph) ≥ C

(
‖uh‖21 + ‖ph‖20

)
∀ 0 < δ < 4

and

sup
(vh,qh)∈Vh×Sh

Q±
0 (uh, ph;vh, qh)
‖uh‖1 + ‖ph‖0

≥ C
(
‖uh‖1 + ‖ph‖0

)
sup

(vh,qh)∈Vh×Sh

Q±
0 (vh, qh;uh, ph)
‖vh‖1 + ‖qh‖0

> 0

 ∀ δ ≥ 4

for any (uh, ph) ∈ Vh × Sh.
Proof. Since complementary forms can be obtained from one another by changing

the sign of the pressure test functions, it suffices to carry out the proofs for only one
of the forms. Here, we choose to work with the minus form Q−

0 . Using (2.7), the
stabilizing term in Q−

0 simplifies to

δ
(
−4uh +∇ph,∇qh

)
−1

= δ
((

uh,∇qh
)
0

+
(
∇ph,∇qh

)
−1

)
.

As a result,

Q−
0 (uh, ph;vh, qh) = A(uh,vh) +

(
∇ph,vh

)
0
+ (δ − 1)

(
∇qh,uh

)
0
+ δ

(
∇ph,∇qh

)
−1

.

To prove strong the coercivity result, let δ be a number between 0 and 4 and
consider Q−

0 (uh, ph;uh, ph). Using Cauchy’s inequality and the ε inequality,

Q−
0 (uh, ph;uh, ph) = A(uh,uh) + δ

(
∇ph,uh

)
0

+ δ
(
∇ph,∇ph

)
−1

≥ |uh|21 + δ‖∇ph‖2−1 − δ‖∇ph‖−1|uh|1

≥
(

1− δ

2ε

)
|uh|21 + δ

(
1− ε

2

)
‖∇ph‖2−1.

To ensure coercivity, both coefficients above must be positive. Therefore, δ and ε
must satisfy the inequalities

0 < δ < 2ε and ε < 2.

This is always possible when 0 < δ < 4. Since ph ∈ L2
0(Ω) and uh ∈ H1

0(Ω), the final
bound

Q−
0 (uh, ph;uh, ph) ≥ C(δ, CP , CN )

(
‖uh‖21 + ‖p‖20

)
follows from (2.8) and (2.1).

To show that Q−
0 is weakly coercive for δ ≥ 4, let (ṽh, q̃h) = (uh, γph) for some

positive γ. Then,

Q−
0 (uh, ph; ṽh, q̃h) = |uh|21 + γδ‖∇ph‖2−1 + (1 + γ(δ − 1))

(
∇ph,uh

)
0

.
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Letting γ = 1/(δ − 1), the Cauchy and ε inequalities further give

Q−
0 (uh, ph; ṽh, q̃h) ≥ |uh|21 +

δ

δ − 1
‖∇ph‖2−1 − 2‖∇ph‖−1|uh|1

≥ (1− ε) |uh|21 +
(

δ

δ − 1
− 1

ε

)
‖∇ph‖2−1 .

Since δ ≥ 4, we can always choose a positive ε such that

δ − 1
δ

< ε < 1 .

This makes both coefficients in the lower bound positive and we can conclude that
there exists C(δ, CP , CN ), independent of h, such that

Q−
0 (uh, ph; ṽh, q̃h) ≥ C(δ, CP , CN )

(
‖uh‖21 + ‖ph‖20

)
.

To complete the proof of the first weak coercivity condition, we note that ‖ṽh‖1 +
‖q̃h‖0 = ‖uh‖1 + 1

δ−1‖p
h‖0 so that the last inequality can be recast into

Q−
0 (uh, ph; ṽh, q̃h) ≥ C(δ, CP , CN )

(
‖uh‖1 + ‖ph‖0

) (
‖ṽh‖1 + ‖q̃h‖0

)
.

To prove the second weak coercivity condition, we choose vh = −S(∇ph) and qh ≡ ph.
Using Lemma 2.1

A(−S(∇ph),uh) = −(∇ph,uh) and −4(−S(∇ph)) = −∇ph .

It is now easy to see that

Q−
0 (−S(∇ph), ph;uh, ph) = (S(∇ph),∇ph)0 = ‖∇ph‖2−1 > 0 ,

where the last identity follows again from Lemma 2.1.
It is a straightforward matter to demonstrate that Q±

0 is continuous. Then,
standard finite element arguments can be used to show that the method is optimally
accurate.

Theorem 4.2. Let (u, p) ∈ H1
0(Ω)∩Hr+1(Ω)×L2

0(Ω)∩Hs+1(Ω) denote a solution
of the Stokes problem and let (uh, ph) solve (3.12) for α = 0. Then, there exists a
constant C > 0 independent of h such that

‖u− uh‖1 + ‖p− ph‖0 ≤ C
(
hr‖u‖r+1 + hs+1‖p‖s+1

)
.

We note for future reference that the stability and error estimates of the SGLS
prototype are given in terms of the natural mesh independent norm of H1(Ω)×L2(Ω).

5. Discrete SGLS. While the continuous SGLS prototype is not a practical
method, its analysis hints at a possibility that members of the SGLS family of methods
may have far better stability properties than previously thought. In this section we
will define a new member of this family that is not only practical, but also inherits the
absolute stability of its continuous prototype in terms of the same mesh independent
norms. In addition, the new method is also optimally accurate and converges at the
same rate as the continuous prototype. To formulate and analyze the new method,
we will make use of several discrete operators along with their relevant properties.
These are reviewed next.
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5.1. Discrete operators. Given a finite element subspace Vh ⊂ H1
0(Ω), we

define the discrete Laplace operator −4h as the mapping −4h : H1
0(Ω) 7→ Vh such

that −4hu = zh if and only if(
zh,vh

)
0

=
(
∇u,∇vh

)
0

∀vh ∈ Vh.(5.1)

The discrete inverse Laplace operator Sh is the mapping Sh : H−1(Ω) 7→ Vh such
that Shu = zh if and only if(

∇zh,∇vh
)
0

=
(
u,vh

)
0

∀vh ∈ Vh.(5.2)

The last operator that we will need is the L2 projection operator onto Vh. This
operator is the mapping Qh : L2(Ω) 7→ Vh such that Qhu = zh if and only if(

zh,vh
)
0

=
(
u,vh

)
0

∀vh ∈ Vh.(5.3)

If the supremum in (2.5) is restricted to the subspace Vh ⊂ H1
0(Ω), we obtain the

discrete negative semi-norm

‖f‖−h = sup
φh∈Vh

(f ,φh)0
|φh|1

, ∀ f ∈ H−1(Ω) .(5.4)

The next theorem summarizes the properties of the discrete operators and norms that
are relevant to our analysis; for part 3, note that

‖(I−Qh)u‖−k = sup
φ∈Hk

0 (Ω)

(
(I−Qh)u,φ

)
0

‖φ‖k
,

where Hk
0(Ω) ≡ Hk(Ω) ∩H1

0(Ω).
Theorem 5.1. 1. For any f ,g ∈ H−1(Ω), define (f ,g)−h =

(
Shf ,g

)
0

=(
f ,Shg

)
0
. Then,

‖f‖2−h = (f , f)−h .(5.5)

2. For any u ∈ L2(Ω)

‖Qhu‖0 ≤ CIh
−1‖u‖−h ,(5.6)

‖u‖2−1 ≤ C
(
h2‖u‖20 + ‖u‖2−h

)
,(5.7)

−4h · Shu = Qhu .(5.8)

3. For any u ∈ L2(Ω) and 0 < k ≤ r + 1

‖(I−Qh)u‖−k ≤ Chk‖u‖0 .(5.9)

Proof. For the proof of the characterization (5.5) and the lower equivalence bound
(5.7), we refer to [5] or [6]. Here, we will only demonstrate the proofs for the inverse
inequality (5.6), the identity (5.8), and the duality estimate (5.9).
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Let u ∈ L2(Ω). Using the definition (5.3) of Qh in (5.4)

‖u‖−h = sup
φh∈Vh

(u,φh)0
|φh|1

= sup
φh∈Vh

(Qhu,φh)0
|φh|1

≥ (Qhu,Qhu)0
|Qhu|1

.

Using the first inequality in (2.4) for Qhu gives that

|Qhu|1 ≤ CIh
−1‖Qhu‖0 .

As a result,

‖u‖−h ≥
‖Qhu‖20
|Qhu|1

≥ h‖Qhu‖20
CI‖Qhu‖0

= hC−1
I ‖Qhu‖0

which proves (5.6). A straightforward application of (5.1)–(5.3) shows that

(−4h Shu,vh) = (∇(Shu),∇vh) = (u,vh)

which proves (5.8). To prove (5.9), we use the definition (5.3) of Qh and Cauchy’s
inequality to show that(

(I−Qh)u,φ
)
0

=
(
u, (I−Qh)φ

)
0
≤ ‖u‖0‖(I−Qh)φ‖0

and then use (2.2) to obtain

‖(I−Qh)φ‖0 ≤ Chk‖φ‖k .

Combining these bounds shows that

‖(I−Qh)u‖−k ≤ sup
φ∈Hk

0 (Ω)

hkC‖u‖0‖φ‖k

‖φ‖k
= Chk‖u‖0 .

5.2. An absolutely stable discrete SGLS method. We introduce the bilin-
ear form

Q±
0,h(uh, ph;vh, qh) = A(uh,vh) + B∗(vh, ph)±B∗(uh, qh)

−δh2
(
−4huh +∇ph,±∇qh

)
0

(5.10)

and the linear functional

F±
0,h(vh, qh) = F (vh)− δh2(f ,±∇qh)0 .

The new member of the SGLS family of methods is to seek (uh, ph) ∈ Vh × Sh such
that

Q±
0,h(uh, ph;vh, qh) = F±

0,h(vh, qh) ∀ (vh, qh) ∈ Vh × Sh.(5.11)

Before we continue with the stability and error analysis of the new method, let us
point out that thanks to definition (5.1)

A(uh,vh) ≡
(
∇uh,∇vh

)
0

=
(
−4huh,vh

)
0
.
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As a result,

Q±
0,h(uh, ph;vh, qh) =

(
−4huh +∇ph,vh

)
0
±B∗(uh, qh)

−δh2
(
−4huh +∇ph,±∇qh

)
0

=
(
−4huh +∇ph,vh ∓ δh2∇qh

)
0
±B∗(uh, qh)

(5.12)

is an equivalent representation of (5.10) and(
−4huh +∇ph,vh ∓ δh2∇qh

)
0
±B∗(uh, qh) =

(
f ,vh ∓ δh2∇qh

)
0

(5.13)

is an equivalent form of (5.11). Problem (5.13) leads to an interesting interpretation
for the new method: it can be viewed as a Petrov-Galerkin like scheme obtained by
modification of the velocity weight function to vh ∓ δh2∇qh.

Because we have replaced −4uh by −4huh in the definition of the method, the
term (

−4hu +∇p− f ,∓δh2∇qh
)
0
6= 0 ,

i.e., the new method is not, strictly speaking, a consistent formulation. However, as
we will see in the next lemma, the inconsistency is very weak. In particular, we will
prove that it does not degrade the optimal convergence rate of the method.

Lemma 5.2. Let (u, p) ∈ H1
0(Ω)∩Hr+1(Ω)×L2

0(Ω)∩Hs+1(Ω) denote a solution
of the Stokes problem and let (uh, ph) be a solution of (5.11). Then,

Q±
0,h(u− uh, p− ph;vh, qh) = δh2

(
−4u, (Qh − I)∇qh

)
0

≤ δChr‖u‖r+1‖qh‖0.
(5.14)

for all (vh, qh) ∈ Vh × Sh.
Proof. Consider the minus form. It is easy to see that

Q−
0,h(u− uh, p− ph;vh, qh) = δh2

(
−4hu +∇p− f ,∇qh

)
0

= δh2
(
−(4h −4)u,∇qh

)
0
.

From the fact that −4hu ∈ Vh, the definition (5.3) of the L2 projection and the
definition (5.1) of −4h, it follows that(

−4hu,∇qh
)
0

=
(
−4hu,Qh∇qh

)
0

=
(
∇u,∇Qh∇qh

)
0

=
(
−4u,Qh∇qh

)
0

and so (
−(4h −4)u,∇qh

)
0

=
(
−4u, (Qh − I)∇qh

)
0

so that the equality in (5.14) is proved. Next, with the help of (5.9) and the inverse
inequality (2.4), we have(

−4u, (Qh − I)∇qh
)
0
≤ ‖4u‖r−1 ‖(Qh − I)∇qh‖1−r

≤ Chr−1‖u‖r+1‖∇qh‖0
≤ Chr−2‖u‖r+1‖qh‖0

from which the inequality in (5.14) follows.
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5.3. Stability and convergence. The main results of this section are to show
that the method (5.11) is absolutely stable and that finite element solutions of (5.11)
converge at optimal rates. We begin by establishing the absolute stability of the
method, i.e., that the bilinear form (5.10) is weakly coercive for all values of the
parameter δ. The proof relies upon a technical result presented in the next lemma.

Lemma 5.3. For any qh ∈ Sh

‖∇qh‖2−1 ≤ C
(
h2‖(I−Qh)∇qh‖20 + ‖∇qh‖2−h

)
.(5.15)

Proof. Since we restrict attention to continuous pressure approximations, ∇qh ∈
L2(Ω). Therefore, (5.7) from Theorem 5.1 implies that

‖∇qh‖2−1 ≤ C
(
h2‖∇qh‖20 + ‖∇qh‖2−h

)
.

Adding and subtracting Qh∇qh to the first term and using the triangle inequality
gives the upper bound

‖∇qh‖2−1 ≤ C
(
h2‖(I−Qh)∇qh‖20 + h2‖Qh∇qh‖20 + ‖∇qh‖2−h

)
.

The lemma follows by using the inverse inequality (5.6) to bound h2‖Qh∇qh‖20 by
CI‖∇qh‖2−h.

Theorem 5.4. Assume that Vh ⊂ H1
0(Ω) and Sh ⊂ L2

0(Ω) ∩H1(Ω). Then, for
any δ > 0, there exists a positive constant C(δ), independent of h such that

sup
(vh,qh)∈Vh×Sh

Q±
0,h(uh, ph;vh, qh)
‖vh‖1 + ‖qh‖0

≥ C(δ)
(
‖uh‖1 + ‖ph‖0

)
sup

(vh,qh)∈Vh×Sh

Q±
0,h(vh, qh;uh, ph)
‖vh‖1 + ‖qh‖0

> 0

(5.16)

for all (uh, ph) ∈ Vh × Sh.
Proof. We recall that the complementary plus and minus forms define equivalent

problems and so it suffices to carry the proof for just one of the forms. Here, we
choose again to work with the minus form. Given a positive δ, we will construct a
test function (ṽh, q̃h) such that

Q−
0,h(uh, ph; ṽh, q̃h) ≥ C

(
‖uh‖1 + ‖ph‖0

) (
‖ṽh‖1 + ‖q̃h‖0

)
.

To find such a function, note that definition (5.2) implies the identity(
∇uh,∇Sh(∇qh)

)
0

=
(
uh,∇qh

)
0
.

Thus, if qh ∈ Sh is arbitrary and vh
1 = Sh(∇qh),

Q−
0,h(uh, ph;vh

1 , qh) =
(
∇ph,Sh∇qh

)
0

+ δh2
(
−4huh +∇ph,∇qh

)
0
.

Adding and subtracting Qh∇ph from the last term gives

Q−
0,h(uh, ph;vh

1 , qh) =
(
∇ph,Sh∇qh

)
0

+ δh2
((

I−Qh
)
∇ph,∇qh

)
0

+δh2
(
−4huh + Qh∇ph,∇qh

)
0
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while the orthogonality

((I−Qh)∇ph,Qh∇qh) = 0

and the fact that −4huh + Qh∇ph ∈ Vh allows us to rewrite the last identity as

Q−
0,h(uh, ph;vh

1 , qh)

=
(
∇ph,Sh∇qh

)
0

+ δh2
((

I−Qh
)
∇ph,

(
I−Qh

)
∇qh

)
0

+δh2
(
−4huh + Qh∇ph,Qh∇qh

)
0
.

(5.17)

Next, (5.12) implies that

Q−
0,h(uh, ph;vh, 0) =

(
−4huh + Qh∇ph,vh

)
0
.

Choosing vh
2 = −δh2Qh∇qh then gives the identity

Q−
0,h(uh, ph;vh

2 , 0) = −δh2
(
−4huh + Qh∇ph,Qh∇qh

)
0
.(5.18)

Therefore, if qh = ph, (5.17)–(5.18) and (5.15) together with the discrete negative
norm characterization in (5.5) imply that

Q−
0,h(uh, ph;vh

1 + vh
2 , ph) =

(
∇ph,Sh∇ph

)
0

+ δh2
((

I−Qh
)
∇ph,

(
I−Qh

)
∇ph

)
0

= ‖∇ph‖2−h + δh2‖
(
I−Qh

)
∇ph‖20 ≥ C(δ)‖∇ph‖2−1 .

Since ph ∈ L2
0(Ω), the last inequality in combination with (2.8) gives a bound in terms

of L2 pressure norm:

Q−
0,h(uh, ph;vh

1 + vh
2 , ph) ≥ C1(δ)‖ph‖20 .(5.19)

To complete the proof of the first weak coercivity condition, note that

Q−
0,h(uh, ph;uh, 0) = |uh|21 + (∇ph,uh)0 = |uh|21 − (ph,∇ · uh)0

≥ C2
P ‖uh‖21 −

√
n‖ph‖0‖uh‖1 ≥

C2
P

2
‖uh‖21 −

n

2C2
P

‖ph‖20 .

Therefore, letting vh
3 = n−1C1(δ)C2

P uh gives

Q−
0,h(uh, ph;vh

3 , 0) ≥ C1(δ)C4
P

2n
‖uh‖21 −

C1(δ)
2

‖ph‖20 ,

where C1(δ) is the constant from (5.19). As a result,

Q−
0,h(uh, ph;vh

1 + vh
2 + vh

3 , ph) ≥ C1(δ)C4
P

2n
‖uh‖21 +

C1(δ)
2

‖ph‖20(5.20)

and the association

(ṽh, q̃h) = (vh
1 + vh

2 + vh
3 , ph)

will fit our purpose if we can show that ‖ṽh‖1 + ‖q̃h‖0 is bounded by ‖uh‖1 + ‖ph‖0.
Using Poincaré’s inequality (2.1) we have

‖ṽh‖1 ≤ C‖∇ṽh‖0
≤ C

(
‖∇vh

1‖0 + ‖∇vh
2‖0 + ‖∇vh

3‖0
)

≤ C
(
‖∇
(
Sh∇ph

)
‖0 + δh2‖∇

(
Qh∇ph

)
‖0 + ‖∇uh‖0

)
.
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To estimate the first term, we use the definition of Sh and Poincaré’s inequality to
find that

‖∇(Sh∇ph)‖20 =
(
∇Sh∇ph,∇Sh∇ph

)
0

=
(
∇ph,Sh∇ph

)
0

= −
(
ph,∇ · Sh∇ph

)
0

≤
√

n‖ph‖0‖Sh∇ph‖1 ≤ C‖ph‖0‖∇Sh∇ph‖0

and, as a result, ∥∥∇ (Sh∇ph
)∥∥

0
≤ C‖ph‖0 .

For the second term, application of the inverse inequality (2.4) twice and the fact that
Qh is bounded gives

δh2‖∇(Qh∇ph)‖0 ≤ δhCI‖Qh∇ph‖0 ≤ δhCI‖∇ph‖0 ≤ δC2
I ‖ph‖0 .

Combining all bounds shows that

‖ṽh‖1 ≤ C
(
‖ph‖0 + ‖uh‖1

)
and so we can rewrite (5.20) as

Q−
0,h(uh, ph; ṽh, q̃h) ≥ C

(
‖uh‖1 + ‖ph‖0

) (
‖ṽh‖1 + ‖q̃h‖0

)
which proves the first part of (5.16). To prove the second weak coercivity condition
we proceed as in the proof of Theorem 4.1 and set vh = −Sh∇ph and qh ≡ ph. Using
definitions (5.1)–(5.3) and Lemma 5.3, we find that

Q−
0,h(−Sh∇ph, ph;uh, ph) = (Sh∇ph,∇ph) + δh2((I−Qh)∇ph,∇ph)

= ‖∇ph‖2−h + δh2‖(I−Qh)∇ph‖20 ≥ C(δ)‖∇ph‖20 > 0 .

This theorem shows that the new discrete method is stable with respect to the
same norms as its continuous prototype, i.e., the natural norm on H1(Ω) × L2(Ω).
This valuable feature of the new method distinguishes it from the standard discrete
SGLS of [18] which is stable with respect to a mesh-dependent norm.

Let us now consider the convergence of finite element solutions. The next theo-
rem shows that the new method yields the same convergence rates as its continuous
prototype with respect to the same mesh-independent norms.

Theorem 5.5. Let (u, p) ∈ H1
0(Ω)∩Hr+1(Ω)×L2

0(Ω)∩Hs+1(Ω) denote a solution
of the Stokes problem and let (uh, ph) solve (5.11). Then,

‖u− uh‖1 + ‖p− ph‖0 ≤ C
(
hr‖u‖r+1 + hs+1‖p‖s+1

)
.(5.21)

Proof. We begin by splitting the error into discrete and approximation theoretic
parts:

‖u− uh‖1 + ‖p− ph‖0 ≤
(
‖uh

I − uh‖1 + ‖ph
I − ph‖0

)
+
(
‖u− uh

I ‖1 + ‖p− ph
I ‖0
)
.
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Since the interpolation error is of optimal order, to prove the theorem it suffices to
estimate the discrete error. Using (5.16),

C(δ)
(
‖ uh

I − uh‖1 + ‖ph
I − ph‖0

)
≤ sup

(vh,qh)∈Vh×Sh

Q±
0,h(uh

I − uh, ph
I − ph;vh, qh)

‖vh‖1 + ‖qh‖0

≤ sup
(vh,qh)∈Vh×Sh

Q±
0,h(u− uh, p− ph;vh, qh) + Q±

0,h(uh
I − u, ph

I − p;vh, qh)
‖vh‖1 + ‖qh‖0

≤ sup
(vh,qh)∈Vh×Sh

Q±
0,h(u− uh, p− ph;vh, qh)

‖vh‖1 + ‖qh‖0
+ C

(
‖u− uh

I ‖1 + ‖p− ph
I ‖0
)

≤ sup
qh∈Sh

δh2
(
−4u, (Qh − I)∇qh

)
0

‖qh‖0
+ C

(
hr‖u‖r+1 + hs+1‖p‖s+1

)
,

where to obtain the last bound we have used (5.14) in Lemma 5.2 and (2.2)–(2.3).
From (5.14), it easily follows that

sup
qh∈Sh

δh2
(
−4u, (Qh − I)∇qh

)
0

‖qh‖0
≤ Chr‖u‖r+1.

This means that the discrete error is of optimal order, i.e.,

‖ uh
I − uh‖1 + ‖ph

I − ph‖0 ≤ C
(
hr‖u‖r+1 + hs+1‖p‖s+1

)
and since the interpolation error is of the same order, (5.21) immediately follows.

6. Concluding remarks. Using the notion of continuous prototypes we formu-
lated a new absolutely stable method for the Stokes problem. The new method is a
close relative of the standard pressure-Poisson stabilized method of [18] in the sense
that they share the same continuous prototype.

However, the two methods differ in several important aspects. The new formu-
lation is weakly inconsistent in the sense that, although being strictly speaking not
consistent, it still leads to optimal error estimates for all C0 finite element subspaces,
including the lowest-order piecewise linear case. In contrast, the standard method is
not only not consistent piecewise linear approximations (because the Laplace operator
annihilates the linear velocity field in (3.17)–(3.18)), but also results in errors that
do not vanish with vanishing grid sizes, i.e., there remains an error proportional to
the parameter δ. Furthermore, the new method is stable with respect to the norm on
H1(Ω)×L2(Ω), while the standard method is stable with respect to a mesh-dependent
norm that is not equivalent to the norm on H1(Ω)× L2(Ω).

Implementation of the new method requires evaluation of the discrete operator
−4h. Given a finite element function uh ∈ Vh, the coefficients ~z of zh = −4huh can
be determined from definition (5.1) by solving the linear system

M~z = ~r.

M is a mass matrix that can be assembled in the usual manner and ~r is a vector with
components

~ri =
(
∇uh,∇φh

i

)
0
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where {φh
k}N

k=1 is a nodal basis for Vh. In practical computations, M can be replaced
by a lumped mass matrix or local projection.

While computation of −4h may seem as an additional overhead compared to
the implementation of the standard method, it is well worth the effort thanks to the
improved accuracy, especially when piecewise linear finite elements are used, and the
guaranteed absolute, mesh-independent, stability of the new method. It should be
mentioned that essentially the same auxiliary problem, involving the inversion of a
mass matrix, arises in standard stabilized methods with improved consistency; see [19].
These methods aim to restore the loss of consistency caused by the annihilation of
all second order derivatives in the element residual when piecewise linear elements
are used. The idea of [19] is to apply an L2 projection to the first derivative of the
finite element solution before the application of the second derivative so as to avoid
its annihilation. Specialized to our context, this method can be viewed as providing
an alternative definition for the discrete Laplace operator. Instead of the operator
−4h : H1

0(Ω) 7→ Vh used in our method, they use the operator −4h
A : Vh 7→ L2(Ω)

defined by

−4h
A = −∇ · (Qh∇uh) .(6.1)

Let us conclude by noting that an important open question that remains to be
answered is whether or not the absolute stability of the continuous SGLS prototype is
inherited by other members of this class. It seems particularly worthwhile to exploit
extensions of our analysis to an SGLS method defined using the alternative discrete
operator (6.1) and to the original pressure-Poisson method of [18] which, as we recall,
behaves numerically just like an absolutely stable formulation. Extending our results
to discontinuous pressure spaces would also be valuable.

REFERENCES

[1] C. Baiocchi and F. Brezzi, Stabilization of unstable numerical methods, Proc. Problemi
attuali dell’ analisi e della fisica matematica, Taormina, 1992, pp. 59–64.

[2] T. Barth, P. Bochev, M. Gunzburger and J.N. Shadid, A Taxonomy of consistently sta-
bilized finite element methods for the Stokes problem, submitted to SIAM J. Sci. Comput.

[3] M. Behr, L. Franca, and T. Tezduyar, Stabilized finite element methods for the velocity-
pressure-stress formulation of incompressible flows, Comput. Meth. Appl. Mech. Engrg.,
104 (1993) pp. 31–48.

[4] P. Bochev and M. Gunzburger, Least-squares finite element methods for elliptic equations,
SIAM Review, 40 (1998) pp. 789–837.

[5] J. Bramble, R. Lazarov, and J. Pasciak, A least squares approach based on a discrete minus
one inner product for first order systems, Technical Report 94-32, Mathematical Science
Institute, Cornell University, 1994.

[6] J. Bramble and J. Pasciak, Least-squares methods for Stokes equations based on a discrete
minus one inner product, J. Comp. App. Math., 74 (1996) pp. 155–173.

[7] F. Brezzi, On existence, uniqueness and approximation of saddle-point problems arising from
Lagrange multipliers, RAIRO Model. Math. Anal. Numer., 21 (1974) pp. 129–151.

[8] F. Brezzi and J. Douglas, Stabilized mixed methods for the Stokes problem, Numer. Math.,
53 (1988) pp.225–235.

[9] Z. Cai and J. Douglas, Stabilized finite element methods with fast iterative solution algorithms
for the Stokes problem., Comp. Meth. Appl. Mech. Engrg. 166 (1998) pp. 115–129.

[10] P. Ciarlet, Finite Element Methods for Elliptic Problems, North Holland, Amsterdam (1978).
[11] J. Douglas and J. Wang, An absolutely stabilized finite element method for the Stokes prob-

lem, Math. Comp., 52 (1989) pp. 495–508.
[12] M. Fortin and R. Glowinski, Augmented Lagrangian methods: applications to numerical

solution of boundary value problems, Studies in Mathematics and its applications, Vol. 15,
Eds. J. L. Lions, G. Papanicolaou, R. T. Rockafellar and H. Fujita, North-Holland (1983).



An absolutely stable pressure-Poisson method 19

[13] L. Franca, S. Frey, and T. Hughes, Stabilized finite element methods: I. Application to the
advective-diffusive model, Comput. Meth. Appl. Mech. Engrg., 95 (1992) pp. 253–276.

[14] L. Franca and R. Stenberg, Error analysis of some Galerkin least-squares methods for the
elasticity equations, SIAM J. Numer. Anal., 28 (1991) pp. 1680–1697.

[15] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer,
Berlin (1986).

[16] M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic,
Boston, (1989).

[17] T. Hughes and L. Franca, A new finite element formulation for computational fluid dy-
namics: VII. The Stokes problem with various well-posed boundary conditions: symmetric
formulations that converge for all velocity pressure spaces, Comput. Meth. Appl. Mech.
Engrg., 65 (1987) pp. 85–96.

[18] T. Hughes, L. Franca, and M. Balestra, A new finite element formulation for computa-
tional fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-
Galerkin formulation of the Stokes problem accommodating equal-order interpolations,
Comput. Meth. Appl. Mech. Engrg., 59 (1986) pp. 85–99.

[19] K. Jansen, S. Collis, C. Whiting, and F. Shakib, A better consistency for low-order stabi-
lized finite element methods, Comput. Meth. Appl. Mech. Engrg., 174 (1999) pp. 153–170.


